Driving simulator with double-wishbone suspension using efficient block-triangularized kinematic equations

نویسندگان

  • Thomas Uchida
  • John McPhee
چکیده

When modeled with ideal joints, many vehicle suspensions contain closed kinematic chains, or kinematic loops, and are most conveniently modeled using a set of generalized coordinates of cardinality exceeding the degrees-of-freedom of the system. Dependent generalized coordinates add nonlinear algebraic constraint equations to the ordinary differential equations of motion, thereby producing a set of differential-algebraic equations that may be difficult to solve in an efficient yet precise manner. Several methods have been proposed for simulating such systems in real time, including index reduction, model simplification, and constraint stabilization techniques. In this work, the equations of motion for a double-wishbone suspension are formulated symbolically using linear graph theory. The embedding technique is applied to eliminate the Lagrange multipliers from the dynamic equations and obtain one ordinary differential equation for each independent acceleration. Symbolic computation is then used to triangularize a subset of the kinematic constraint equations, thereby producing a recursively solvable system for calculating a subset of the dependent generalized coordinates. Thus, the kinematic equations are reduced to a block-triangular form, which results in a more computationally efficient solution strategy than that obtained by iterating over the original constraint equations. The efficiency of this block-triangular kinematic solution is exploited in the real-time simulation of a vehicle with double-wishbone suspensions on both axles, which is implemented in a hardwareand operator-in-the-loop driving simulator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Gröbner bases to generate efficient kinematic solutions for the dynamic simulation of multi-loop mechanisms

Article history: Received 1 September 2011 Received in revised form 15 January 2012 Accepted 21 January 2012 Available online 23 February 2012 Manymechanical systems of practical interest contain closed kinematic chains, and aremost conveniently modeled using a set of redundant generalized coordinates. The governing dynamic equations for systems with more coordinates than degrees-of-freedom are...

متن کامل

Design and Kinematic Analysis of a 4-DOF Serial-Parallel Manipulator for a Driving Simulator

This paper presents the kinematic analysis and the development of a 4-degree-of-freedom serial-parallel mechanism for large commercial vehicle driving simulators. The degrees of freedom are selected according to the target maneuvers and the structure of human motion perception organs. Several kinematic properties of parallel part of the mechanism under study are investigated, including the inve...

متن کامل

Design and Analysis Double Wishbone Suspension System using Finite Element Analysis

Double wishbone designs allow the engineer to carefully control the motion of the wheel throughout suspension travel. 3-D model of the Lower Wishbone Arm is prepared by using CAD software for modal and stress analysis. The forces and moments are used as the boundary conditions for finite element model of the wishbone arm. By using these boundary conditions static analysis is carried out. Then m...

متن کامل

Multiobjective Robust Design of the Double Wishbone Suspension System Based on Particle Swarm Optimization

The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positi...

متن کامل

New Suspension Mechanism Using Camber Thrust for a Formula Car

The basic ability of a vehicle is to “run”, “turn” and “stop”. The safeness and comfort during a drive on various road surfaces and speed depends on the performance of these basic abilities of the vehicle. Stability and maneuverability of a vehicle are vital in automotive engineering. The stability of a vehicle is the ability of the vehicle to revert back to a stable state during a drive when f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012